Files @ a477ff27aff8
Branch filter:

Location: Jabel/Software/hoverboard-firmware-hack_modified20190825/Drivers/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_uart.c

Fantawams
Updated Software repo
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
/**
  ******************************************************************************
  * @file    stm32f1xx_hal_uart.c
  * @author  MCD Application Team
  * @version V1.1.1
  * @date    12-May-2017
  * @brief   UART HAL module driver.
  *          This file provides firmware functions to manage the following 
  *          functionalities of the Universal Asynchronous Receiver Transmitter (UART) peripheral:
  *           + Initialization and de-initialization functions
  *           + IO operation functions
  *           + Peripheral Control functions
  *           + Peripheral State and Errors functions
  @verbatim
  ==============================================================================
                        ##### How to use this driver #####
  ==============================================================================
  [..]
    The UART HAL driver can be used as follows:

    (#) Declare a UART_HandleTypeDef handle structure.
    (#) Initialize the UART low level resources by implementing the HAL_UART_MspInit() API:
        (##) Enable the USARTx interface clock.
        (##) UART pins configuration:
            (+++) Enable the clock for the UART GPIOs.
            (+++) Configure the UART pins (TX as alternate function pull-up, RX as alternate function Input).
        (##) NVIC configuration if you need to use interrupt process (HAL_UART_Transmit_IT()
             and HAL_UART_Receive_IT() APIs):
            (+++) Configure the USARTx interrupt priority.
            (+++) Enable the NVIC USART IRQ handle.
        (##) DMA Configuration if you need to use DMA process (HAL_UART_Transmit_DMA()
             and HAL_UART_Receive_DMA() APIs):
            (+++) Declare a DMA handle structure for the Tx/Rx channel.
            (+++) Enable the DMAx interface clock.
            (+++) Configure the declared DMA handle structure with the required 
                  Tx/Rx parameters.                
            (+++) Configure the DMA Tx/Rx channel.
            (+++) Associate the initialized DMA handle to the UART DMA Tx/Rx handle.
            (+++) Configure the priority and enable the NVIC for the transfer complete 
                  interrupt on the DMA Tx/Rx channel.
            (+++) Configure the USARTx interrupt priority and enable the NVIC USART IRQ handle
                  (used for last byte sending completion detection in DMA non circular mode)

    (#) Program the Baud Rate, Word Length, Stop Bit, Parity, Hardware 
        flow control and Mode(Receiver/Transmitter) in the huart Init structure.

    (#) For the UART asynchronous mode, initialize the UART registers by calling
        the HAL_UART_Init() API.

    (#) For the UART Half duplex mode, initialize the UART registers by calling 
        the HAL_HalfDuplex_Init() API.

    (#) For the LIN mode, initialize the UART registers by calling the HAL_LIN_Init() API.

    (#) For the Multi-Processor mode, initialize the UART registers by calling 
        the HAL_MultiProcessor_Init() API.

     [..] 
       (@) The specific UART interrupts (Transmission complete interrupt, 
            RXNE interrupt and Error Interrupts) will be managed using the macros
            __HAL_UART_ENABLE_IT() and __HAL_UART_DISABLE_IT() inside the transmit 
            and receive process.

     [..] 
       (@) These APIs (HAL_UART_Init() and HAL_HalfDuplex_Init()) configure also the 
            low level Hardware GPIO, CLOCK, CORTEX...etc) by calling the customized
            HAL_UART_MspInit() API.

     [..]
        Three operation modes are available within this driver:

     *** Polling mode IO operation ***
     =================================
     [..]
       (+) Send an amount of data in blocking mode using HAL_UART_Transmit()
       (+) Receive an amount of data in blocking mode using HAL_UART_Receive()

     *** Interrupt mode IO operation ***
     ===================================
     [..]
       (+) Send an amount of data in non blocking mode using HAL_UART_Transmit_IT() 
       (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_UART_TxCpltCallback
       (+) Receive an amount of data in non blocking mode using HAL_UART_Receive_IT() 
       (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_UART_RxCpltCallback
       (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can 
            add his own code by customization of function pointer HAL_UART_ErrorCallback

     *** DMA mode IO operation ***
     ==============================
     [..] 
       (+) Send an amount of data in non blocking mode (DMA) using HAL_UART_Transmit_DMA() 
       (+) At transmission end of half transfer HAL_UART_TxHalfCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_UART_TxHalfCpltCallback 
       (+) At transmission end of transfer HAL_UART_TxCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_UART_TxCpltCallback
       (+) Receive an amount of data in non blocking mode (DMA) using HAL_UART_Receive_DMA() 
       (+) At reception end of half transfer HAL_UART_RxHalfCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_UART_RxHalfCpltCallback 
       (+) At reception end of transfer HAL_UART_RxCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_UART_RxCpltCallback
       (+) In case of transfer Error, HAL_UART_ErrorCallback() function is executed and user can 
            add his own code by customization of function pointer HAL_UART_ErrorCallback
       (+) Pause the DMA Transfer using HAL_UART_DMAPause()
       (+) Resume the DMA Transfer using HAL_UART_DMAResume()
       (+) Stop the DMA Transfer using HAL_UART_DMAStop()

     *** UART HAL driver macros list ***
     =============================================
     [..]
       Below the list of most used macros in UART HAL driver.

      (+) __HAL_UART_ENABLE: Enable the UART peripheral 
      (+) __HAL_UART_DISABLE: Disable the UART peripheral
      (+) __HAL_UART_GET_FLAG : Check whether the specified UART flag is set or not
      (+) __HAL_UART_CLEAR_FLAG : Clear the specified UART pending flag
      (+) __HAL_UART_ENABLE_IT: Enable the specified UART interrupt
      (+) __HAL_UART_DISABLE_IT: Disable the specified UART interrupt
      (+) __HAL_UART_GET_IT_SOURCE: Check whether the specified UART interrupt has occurred or not

     [..]
       (@) You can refer to the UART HAL driver header file for more useful macros 
  @endverbatim
     [..]
       (@) Additionnal remark: If the parity is enabled, then the MSB bit of the data written
           in the data register is transmitted but is changed by the parity bit.
           Depending on the frame length defined by the M bit (8-bits or 9-bits),
           the possible UART frame formats are as listed in the following table:
    +-------------------------------------------------------------+
    |   M bit |  PCE bit  |            UART frame                 |
    |---------------------|---------------------------------------|
    |    0    |    0      |    | SB | 8 bit data | STB |          |
    |---------|-----------|---------------------------------------|
    |    0    |    1      |    | SB | 7 bit data | PB | STB |     |
    |---------|-----------|---------------------------------------|
    |    1    |    0      |    | SB | 9 bit data | STB |          |
    |---------|-----------|---------------------------------------|
    |    1    |    1      |    | SB | 8 bit data | PB | STB |     |
    +-------------------------------------------------------------+
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"

/** @addtogroup STM32F1xx_HAL_Driver
  * @{
  */

/** @defgroup UART UART
  * @brief HAL UART module driver
  * @{
  */
#ifdef HAL_UART_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup UART_Private_Constants
  * @{
  */
/**
  * @}
  */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup UART_Private_Functions
  * @{
  */
static void UART_EndTxTransfer(UART_HandleTypeDef *huart);
static void UART_EndRxTransfer(UART_HandleTypeDef *huart);
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma);
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma);
static void UART_DMAError(DMA_HandleTypeDef *hdma);
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma);
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart);
static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart);
static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart);
static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout);
static void UART_SetConfig (UART_HandleTypeDef *huart);
/**
  * @}
  */
/* Exported functions ---------------------------------------------------------*/
/** @defgroup UART_Exported_Functions UART Exported Functions
  * @{
  */

/** @defgroup UART_Exported_Functions_Group1 Initialization and de-initialization functions 
  *  @brief    Initialization and Configuration functions 
  *
@verbatim
  ==============================================================================
            ##### Initialization and Configuration functions #####
  ==============================================================================
    [..]
    This subsection provides a set of functions allowing to initialize the USARTx or the UARTy 
    in asynchronous mode.
      (+) For the asynchronous mode only these parameters can be configured: 
        (++) Baud Rate
        (++) Word Length 
        (++) Stop Bit
        (++) Parity: If the parity is enabled, then the MSB bit of the data written
             in the data register is transmitted but is changed by the parity bit.
             Depending on the frame length defined by the M bit (8-bits or 9-bits),
             please refer to Reference manual for possible UART frame formats.
        (++) Hardware flow control
        (++) Receiver/transmitter modes
        (++) Over Sampling Method
    [..]
    The HAL_UART_Init(), HAL_HalfDuplex_Init(), HAL_LIN_Init() and HAL_MultiProcessor_Init() APIs 
    follow respectively the UART asynchronous, UART Half duplex, LIN and Multi-Processor
    configuration procedures (details for the procedures are available in reference manuals 
    (RM0008 for STM32F10Xxx MCUs and RM0041 for STM32F100xx MCUs)).

@endverbatim
  * @{
  */

/**
  * @brief  Initializes the UART mode according to the specified parameters in
  *         the UART_InitTypeDef and create the associated handle.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart)
{
  /* Check the UART handle allocation */
  if(huart == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  if(huart->Init.HwFlowCtl != UART_HWCONTROL_NONE)
  {
    /* The hardware flow control is available only for USART1, USART2, USART3 */
    assert_param(IS_UART_HWFLOW_INSTANCE(huart->Instance));
    assert_param(IS_UART_HARDWARE_FLOW_CONTROL(huart->Init.HwFlowCtl));
  }
  else
  {
    assert_param(IS_UART_INSTANCE(huart->Instance));
  }
  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
#if defined(USART_CR1_OVER8)
  assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
#endif /* USART_CR1_OVER8 */
  
  if(huart->gState == HAL_UART_STATE_RESET)
  {  
    /* Allocate lock resource and initialize it */
    huart->Lock = HAL_UNLOCKED;

    /* Init the low level hardware */
    HAL_UART_MspInit(huart);
  }

  huart->gState = HAL_UART_STATE_BUSY;

  /* Disable the peripheral */
  __HAL_UART_DISABLE(huart);
  
  /* Set the UART Communication parameters */
  UART_SetConfig(huart);
  
  /* In asynchronous mode, the following bits must be kept cleared: 
     - LINEN and CLKEN bits in the USART_CR2 register,
     - SCEN, HDSEL and IREN  bits in the USART_CR3 register.*/
  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
  
  /* Enable the peripheral */
  __HAL_UART_ENABLE(huart);
  
  /* Initialize the UART state */
  huart->ErrorCode = HAL_UART_ERROR_NONE;
  huart->gState= HAL_UART_STATE_READY;
  huart->RxState= HAL_UART_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief  Initializes the half-duplex mode according to the specified
  *         parameters in the UART_InitTypeDef and create the associated handle.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_HalfDuplex_Init(UART_HandleTypeDef *huart)
{
  /* Check the UART handle allocation */
  if(huart == NULL)
  {
    return HAL_ERROR;
  }
 
  /* Check the parameters */ 
  assert_param(IS_UART_HALFDUPLEX_INSTANCE(huart->Instance));
  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
#if defined(USART_CR1_OVER8)
  assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
#endif /* USART_CR1_OVER8 */
  if(huart->gState == HAL_UART_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    huart->Lock = HAL_UNLOCKED;
    /* Init the low level hardware */
    HAL_UART_MspInit(huart);
  }

  huart->gState = HAL_UART_STATE_BUSY;

  /* Disable the peripheral */
  __HAL_UART_DISABLE(huart);
  
  /* Set the UART Communication parameters */
  UART_SetConfig(huart);
  
  /* In half-duplex mode, the following bits must be kept cleared:
     - LINEN and CLKEN bits in the USART_CR2 register,
     - SCEN and IREN bits in the USART_CR3 register.*/
  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_IREN | USART_CR3_SCEN));
  
  /* Enable the Half-Duplex mode by setting the HDSEL bit in the CR3 register */
  SET_BIT(huart->Instance->CR3, USART_CR3_HDSEL);
 
  /* Enable the peripheral */
  __HAL_UART_ENABLE(huart);
  
  /* Initialize the UART state*/
  huart->ErrorCode = HAL_UART_ERROR_NONE;
  huart->gState= HAL_UART_STATE_READY;
  huart->RxState= HAL_UART_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief  Initializes the LIN mode according to the specified
  *         parameters in the UART_InitTypeDef and create the associated handle.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @param  BreakDetectLength: Specifies the LIN break detection length.
  *         This parameter can be one of the following values:
  *            @arg UART_LINBREAKDETECTLENGTH_10B: 10-bit break detection
  *            @arg UART_LINBREAKDETECTLENGTH_11B: 11-bit break detection
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_LIN_Init(UART_HandleTypeDef *huart, uint32_t BreakDetectLength)
{
  /* Check the UART handle allocation */
  if(huart == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Check the LIN UART instance */  
  assert_param(IS_UART_LIN_INSTANCE(huart->Instance));
  /* Check the Break detection length parameter */
  assert_param(IS_UART_LIN_BREAK_DETECT_LENGTH(BreakDetectLength));
  assert_param(IS_UART_LIN_WORD_LENGTH(huart->Init.WordLength));
#if defined(USART_CR1_OVER8)
  assert_param(IS_UART_LIN_OVERSAMPLING(huart->Init.OverSampling));
#endif /* USART_CR1_OVER8 */
  
  if(huart->gState == HAL_UART_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    huart->Lock = HAL_UNLOCKED;
    /* Init the low level hardware */
    HAL_UART_MspInit(huart);
  }

  huart->gState = HAL_UART_STATE_BUSY;

  /* Disable the peripheral */
  __HAL_UART_DISABLE(huart);
  
  /* Set the UART Communication parameters */
  UART_SetConfig(huart);
  
  /* In LIN mode, the following bits must be kept cleared: 
     - CLKEN bits in the USART_CR2 register,
     - SCEN and IREN bits in the USART_CR3 register.*/
  CLEAR_BIT(huart->Instance->CR2, USART_CR2_CLKEN);
  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_HDSEL | USART_CR3_IREN | USART_CR3_SCEN));
  
  /* Enable the LIN mode by setting the LINEN bit in the CR2 register */
  SET_BIT(huart->Instance->CR2, USART_CR2_LINEN);
  
  /* Set the USART LIN Break detection length. */
  MODIFY_REG(huart->Instance->CR2, USART_CR2_LBDL, BreakDetectLength);
  
  /* Enable the peripheral */
  __HAL_UART_ENABLE(huart);
  
  /* Initialize the UART state*/
  huart->ErrorCode = HAL_UART_ERROR_NONE;
  huart->gState= HAL_UART_STATE_READY;
  huart->RxState= HAL_UART_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief  Initializes the Multi-Processor mode according to the specified
  *         parameters in the UART_InitTypeDef and create the associated handle.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @param  Address: USART address
  * @param  WakeUpMethod: specifies the USART wake-up method.
  *         This parameter can be one of the following values:
  *            @arg UART_WAKEUPMETHOD_IDLELINE: Wake-up by an idle line detection
  *            @arg UART_WAKEUPMETHOD_ADDRESSMARK: Wake-up by an address mark
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_MultiProcessor_Init(UART_HandleTypeDef *huart, uint8_t Address, uint32_t WakeUpMethod)
{
  /* Check the UART handle allocation */
  if(huart == NULL)
  {
    return HAL_ERROR;
  }

  /* Check UART instance capabilities */  
  assert_param(IS_UART_MULTIPROCESSOR_INSTANCE(huart->Instance));

  /* Check the Address & wake up method parameters */
  assert_param(IS_UART_WAKEUPMETHOD(WakeUpMethod));
  assert_param(IS_UART_ADDRESS(Address));
  assert_param(IS_UART_WORD_LENGTH(huart->Init.WordLength));
#if defined(USART_CR1_OVER8)
  assert_param(IS_UART_OVERSAMPLING(huart->Init.OverSampling));
#endif /* USART_CR1_OVER8 */

  if(huart->gState == HAL_UART_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    huart->Lock = HAL_UNLOCKED;
    /* Init the low level hardware */
    HAL_UART_MspInit(huart);
  }

  huart->gState = HAL_UART_STATE_BUSY;

  /* Disable the peripheral */
  __HAL_UART_DISABLE(huart);
  
  /* Set the UART Communication parameters */
  UART_SetConfig(huart);
  
  /* In Multi-Processor mode, the following bits must be kept cleared: 
     - LINEN and CLKEN bits in the USART_CR2 register,
     - SCEN, HDSEL and IREN  bits in the USART_CR3 register */
  CLEAR_BIT(huart->Instance->CR2, (USART_CR2_LINEN | USART_CR2_CLKEN));
  CLEAR_BIT(huart->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL | USART_CR3_IREN));
  
  /* Set the USART address node */
  MODIFY_REG(huart->Instance->CR2, USART_CR2_ADD, Address);
  
  /* Set the wake up method by setting the WAKE bit in the CR1 register */
  MODIFY_REG(huart->Instance->CR1, USART_CR1_WAKE, WakeUpMethod);
  
  /* Enable the peripheral */
  __HAL_UART_ENABLE(huart);
  
  /* Initialize the UART state */
  huart->ErrorCode = HAL_UART_ERROR_NONE;
  huart->gState = HAL_UART_STATE_READY;
  huart->RxState = HAL_UART_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief  DeInitializes the UART peripheral. 
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_DeInit(UART_HandleTypeDef *huart)
{
  /* Check the UART handle allocation */
  if(huart == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_UART_INSTANCE(huart->Instance));

  huart->gState = HAL_UART_STATE_BUSY;

  /* DeInit the low level hardware */
  HAL_UART_MspDeInit(huart);

  huart->ErrorCode = HAL_UART_ERROR_NONE;
  huart->gState = HAL_UART_STATE_RESET;
  huart->RxState = HAL_UART_STATE_RESET;

  /* Process Unlock */
  __HAL_UNLOCK(huart);

  return HAL_OK;
}

/**
  * @brief  UART MSP Init.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval None
  */
__weak void HAL_UART_MspInit(UART_HandleTypeDef *huart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart);
  /* NOTE: This function should not be modified, when the callback is needed,
           the HAL_UART_MspInit could be implemented in the user file
   */
}

/**
  * @brief  UART MSP DeInit.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval None
  */
__weak void HAL_UART_MspDeInit(UART_HandleTypeDef *huart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart);
  /* NOTE: This function should not be modified, when the callback is needed,
           the HAL_UART_MspDeInit could be implemented in the user file
   */
}

/**
  * @}
  */

/** @defgroup UART_Exported_Functions_Group2 IO operation functions 
  *  @brief UART Transmit and Receive functions 
  *
@verbatim
  ==============================================================================
                      ##### IO operation functions #####
  ==============================================================================
  [..]
    This subsection provides a set of functions allowing to manage the UART asynchronous
    and Half duplex data transfers.

    (#) There are two modes of transfer:
       (++) Blocking mode: The communication is performed in polling mode. 
            The HAL status of all data processing is returned by the same function 
            after finishing transfer.  
       (++) Non blocking mode: The communication is performed using Interrupts 
            or DMA, these APIs return the HAL status.
            The end of the data processing will be indicated through the 
            dedicated UART IRQ when using Interrupt mode or the DMA IRQ when 
            using DMA mode.
            The HAL_UART_TxCpltCallback(), HAL_UART_RxCpltCallback() user callbacks 
            will be executed respectively at the end of the transmit or receive process.
            The HAL_UART_ErrorCallback() user callback will be executed when 
            a communication error is detected.

    (#) Blocking mode APIs are:
        (++) HAL_UART_Transmit()
        (++) HAL_UART_Receive() 

    (#) Non Blocking mode APIs with Interrupt are:
        (++) HAL_UART_Transmit_IT()
        (++) HAL_UART_Receive_IT()
        (++) HAL_UART_IRQHandler()

    (#) Non Blocking mode functions with DMA are:
        (++) HAL_UART_Transmit_DMA()
        (++) HAL_UART_Receive_DMA()
        (++) HAL_UART_DMAPause()
        (++) HAL_UART_DMAResume()
        (++) HAL_UART_DMAStop()

    (#) A set of Transfer Complete Callbacks are provided in non blocking mode:
        (++) HAL_UART_TxHalfCpltCallback()
        (++) HAL_UART_TxCpltCallback()
        (++) HAL_UART_RxHalfCpltCallback()
        (++) HAL_UART_RxCpltCallback()
        (++) HAL_UART_ErrorCallback()

    [..]
      (@) In the Half duplex communication, it is forbidden to run the transmit 
          and receive process in parallel, the UART state HAL_UART_STATE_BUSY_TX_RX
          can't be useful.

@endverbatim
  * @{
  */

/**
  * @brief  Sends an amount of data in blocking mode.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @param  Timeout: Timeout duration  
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint16_t* tmp;
  uint32_t tickstart = 0U;
  
  /* Check that a Tx process is not already ongoing */
  if(huart->gState == HAL_UART_STATE_READY)
  {
    if((pData == NULL) || (Size == 0U))
    {
      return  HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(huart);

    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->gState = HAL_UART_STATE_BUSY_TX;

    /* Init tickstart for timeout managment */
    tickstart = HAL_GetTick();

    huart->TxXferSize = Size;
    huart->TxXferCount = Size;
    while(huart->TxXferCount > 0U)
    {
      huart->TxXferCount--;
      if(huart->Init.WordLength == UART_WORDLENGTH_9B)
      {
        if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        tmp = (uint16_t*) pData;
        huart->Instance->DR = (*tmp & (uint16_t)0x01FF);
        if(huart->Init.Parity == UART_PARITY_NONE)
        {
          pData +=2U;
        }
        else
        {
          pData +=1U;
        }
      }
      else
      {
        if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        huart->Instance->DR = (*pData++ & (uint8_t)0xFF);
      }
    }

    if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
    {
      return HAL_TIMEOUT;
    }

    /* At end of Tx process, restore huart->gState to Ready */
    huart->gState = HAL_UART_STATE_READY;

    /* Process Unlocked */
    __HAL_UNLOCK(huart);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receive an amount of data in blocking mode. 
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be received
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint16_t* tmp;
  uint32_t tickstart = 0U;
  
  /* Check that a Rx process is not already ongoing */
  if(huart->RxState == HAL_UART_STATE_READY)
  {
    if((pData == NULL) || (Size == 0U))
    {
      return  HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(huart);
    
    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->RxState = HAL_UART_STATE_BUSY_RX;

    /* Init tickstart for timeout managment */
    tickstart = HAL_GetTick();

    huart->RxXferSize = Size;
    huart->RxXferCount = Size;

    /* Check the remain data to be received */
    while(huart->RxXferCount > 0U)
    {
      huart->RxXferCount--;
      if(huart->Init.WordLength == UART_WORDLENGTH_9B)
      {
        if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        tmp = (uint16_t*)pData;
        if(huart->Init.Parity == UART_PARITY_NONE)
        {
          *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
          pData +=2U;
        }
        else
        {
          *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x00FF);
          pData +=1U;
        }

      } 
      else
      {
        if(UART_WaitOnFlagUntilTimeout(huart, UART_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        if(huart->Init.Parity == UART_PARITY_NONE)
        {
          *pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
        }
        else
        {
          *pData++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
        }

      }
    }

    /* At end of Rx process, restore huart->RxState to Ready */
    huart->RxState = HAL_UART_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(huart);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Sends an amount of data in non blocking mode.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_Transmit_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
  /* Check that a Tx process is not already ongoing */
  if(huart->gState == HAL_UART_STATE_READY)
  {
    if((pData == NULL) || (Size == 0U)) 
    {
      return HAL_ERROR;
    }
    /* Process Locked */
    __HAL_LOCK(huart);

    huart->pTxBuffPtr = pData;
    huart->TxXferSize = Size;
    huart->TxXferCount = Size;

    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->gState = HAL_UART_STATE_BUSY_TX;

    /* Process Unlocked */
    __HAL_UNLOCK(huart);

    /* Enable the UART Transmit data register empty Interrupt */
    __HAL_UART_ENABLE_IT(huart, UART_IT_TXE);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receives an amount of data in non blocking mode. 
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be received
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_Receive_IT(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
  /* Check that a Rx process is not already ongoing */
  if(huart->RxState == HAL_UART_STATE_READY)
  {
    if((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(huart);

    huart->pRxBuffPtr = pData;
    huart->RxXferSize = Size;
    huart->RxXferCount = Size;

    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->RxState = HAL_UART_STATE_BUSY_RX;
    
    /* Process Unlocked */
    __HAL_UNLOCK(huart);

    /* Enable the UART Parity Error Interrupt */
    __HAL_UART_ENABLE_IT(huart, UART_IT_PE);

    /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_UART_ENABLE_IT(huart, UART_IT_ERR);

    /* Enable the UART Data Register not empty Interrupt */
    __HAL_UART_ENABLE_IT(huart, UART_IT_RXNE);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Sends an amount of data in non blocking mode. 
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
  uint32_t *tmp;
  
  /* Check that a Tx process is not already ongoing */
  if(huart->gState == HAL_UART_STATE_READY)
  {
    if((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(huart);

    huart->pTxBuffPtr = pData;
    huart->TxXferSize = Size;
    huart->TxXferCount = Size;

    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->gState = HAL_UART_STATE_BUSY_TX;

    /* Set the UART DMA transfer complete callback */
    huart->hdmatx->XferCpltCallback = UART_DMATransmitCplt;

    /* Set the UART DMA Half transfer complete callback */
    huart->hdmatx->XferHalfCpltCallback = UART_DMATxHalfCplt;

    /* Set the DMA error callback */
    huart->hdmatx->XferErrorCallback = UART_DMAError;

    /* Set the DMA abort callback */
    huart->hdmatx->XferAbortCallback = NULL;

    /* Enable the UART transmit DMA channel */
    tmp = (uint32_t*)&pData;
    HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t*)tmp, (uint32_t)&huart->Instance->DR, Size);

    /* Clear the TC flag in the SR register by writing 0 to it */
    __HAL_UART_CLEAR_FLAG(huart, UART_FLAG_TC);

    /* Process Unlocked */
    __HAL_UNLOCK(huart);

    /* Enable the DMA transfer for transmit request by setting the DMAT bit
       in the UART CR3 register */
    SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receives an amount of data in non blocking mode. 
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be received
  * @note   When the UART parity is enabled (PCE = 1) the data received contain the parity bit.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
{
  uint32_t *tmp;
  
  /* Check that a Rx process is not already ongoing */
  if(huart->RxState == HAL_UART_STATE_READY) 
  {
    if((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(huart);

    huart->pRxBuffPtr = pData;
    huart->RxXferSize = Size;

    huart->ErrorCode = HAL_UART_ERROR_NONE;
    huart->RxState = HAL_UART_STATE_BUSY_RX;

    /* Set the UART DMA transfer complete callback */
    huart->hdmarx->XferCpltCallback = UART_DMAReceiveCplt;

    /* Set the UART DMA Half transfer complete callback */
    huart->hdmarx->XferHalfCpltCallback = UART_DMARxHalfCplt;

    /* Set the DMA error callback */
    huart->hdmarx->XferErrorCallback = UART_DMAError;

    /* Set the DMA abort callback */
    huart->hdmarx->XferAbortCallback = NULL;

    /* Enable the DMA channel */
    tmp = (uint32_t*)&pData;
    HAL_DMA_Start_IT(huart->hdmarx, (uint32_t)&huart->Instance->DR, *(uint32_t*)tmp, Size);

    /* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */
    __HAL_UART_CLEAR_OREFLAG(huart);

    /* Process Unlocked */
    __HAL_UNLOCK(huart);

    /* Enable the UART Parity Error Interrupt */
    SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);

    /* Enable the UART Error Interrupt: (Frame error, noise error, overrun error) */
    SET_BIT(huart->Instance->CR3, USART_CR3_EIE);

    /* Enable the DMA transfer for the receiver request by setting the DMAR bit 
    in the UART CR3 register */
    SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Pauses the DMA Transfer.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_DMAPause(UART_HandleTypeDef *huart)
{
  uint32_t dmarequest = 0x00U;

  /* Process Locked */
  __HAL_LOCK(huart);

  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
  if((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
  {
    /* Disable the UART DMA Tx request */
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);
  }

  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
  if((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
  {
    /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
    CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);

    /* Disable the UART DMA Rx request */
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);
  }

  /* Process Unlocked */
  __HAL_UNLOCK(huart);
  
  return HAL_OK;
}

/**
  * @brief Resumes the DMA Transfer.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_DMAResume(UART_HandleTypeDef *huart)
{
  /* Process Locked */
  __HAL_LOCK(huart);
  
  if(huart->gState == HAL_UART_STATE_BUSY_TX)
  {
    /* Enable the UART DMA Tx request */
    SET_BIT(huart->Instance->CR3, USART_CR3_DMAT);
  }

  if(huart->RxState == HAL_UART_STATE_BUSY_RX)
  {
    /* Clear the Overrun flag before resuming the Rx transfer*/
    __HAL_UART_CLEAR_OREFLAG(huart);
    
    /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */
    SET_BIT(huart->Instance->CR1, USART_CR1_PEIE);
    SET_BIT(huart->Instance->CR3, USART_CR3_EIE);
    
    /* Enable the UART DMA Rx request */
    SET_BIT(huart->Instance->CR3, USART_CR3_DMAR);
  }

  /* Process Unlocked */
  __HAL_UNLOCK(huart);
  
  return HAL_OK;
}

/**
  * @brief Stops the DMA Transfer.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_UART_DMAStop(UART_HandleTypeDef *huart)
{
  uint32_t dmarequest = 0x00U;
  /* The Lock is not implemented on this API to allow the user application
     to call the HAL UART API under callbacks HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback():
     when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
     and the correspond call back is executed HAL_UART_TxCpltCallback() / HAL_UART_RxCpltCallback()
     */

  /* Stop UART DMA Tx request if ongoing */
  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
  if((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
  {
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);

    /* Abort the UART DMA Tx channel */
    if(huart->hdmatx != NULL)
    {
      HAL_DMA_Abort(huart->hdmatx);
    }
    UART_EndTxTransfer(huart);
  }

  /* Stop UART DMA Rx request if ongoing */
  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
  if((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
  {
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);

    /* Abort the UART DMA Rx channel */
    if(huart->hdmarx != NULL)
    {
      HAL_DMA_Abort(huart->hdmarx);
    }
    UART_EndRxTransfer(huart);
  }

  return HAL_OK;
}

/**
  * @brief  Abort ongoing transfers (blocking mode).
  * @param  huart UART handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  *           - Set handle State to READY
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Abort(UART_HandleTypeDef *huart)
{
  /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
  CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
  
  /* Disable the UART DMA Tx request if enabled */
  if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
  {
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);

    /* Abort the UART DMA Tx channel: use blocking DMA Abort API (no callback) */
    if(huart->hdmatx != NULL)
    {
      /* Set the UART DMA Abort callback to Null. 
         No call back execution at end of DMA abort procedure */
      huart->hdmatx->XferAbortCallback = NULL;

      HAL_DMA_Abort(huart->hdmatx);
    }
  }

  /* Disable the UART DMA Rx request if enabled */
  if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);

    /* Abort the UART DMA Rx channel: use blocking DMA Abort API (no callback) */
    if(huart->hdmarx != NULL)
    {
      /* Set the UART DMA Abort callback to Null. 
         No call back execution at end of DMA abort procedure */
      huart->hdmarx->XferAbortCallback = NULL;

      HAL_DMA_Abort(huart->hdmarx);
    }
  }

  /* Reset Tx and Rx transfer counters */
  huart->TxXferCount = 0x00U;
  huart->RxXferCount = 0x00U;

  /* Reset ErrorCode */
  huart->ErrorCode = HAL_UART_ERROR_NONE;

  /* Restore huart->RxState and huart->gState to Ready */
  huart->RxState = HAL_UART_STATE_READY;
  huart->gState = HAL_UART_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Transmit transfer (blocking mode).
  * @param  huart UART handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  *           - Set handle State to READY
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_AbortTransmit(UART_HandleTypeDef *huart)
{
  /* Disable TXEIE and TCIE interrupts */
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));

  /* Disable the UART DMA Tx request if enabled */
  if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
  {
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);

    /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
    if(huart->hdmatx != NULL)
    {
      /* Set the UART DMA Abort callback to Null. 
         No call back execution at end of DMA abort procedure */
      huart->hdmatx->XferAbortCallback = NULL;

      HAL_DMA_Abort(huart->hdmatx);
    }
  }

  /* Reset Tx transfer counter */
  huart->TxXferCount = 0x00U;

  /* Restore huart->gState to Ready */
  huart->gState = HAL_UART_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Receive transfer (blocking mode).
  * @param  huart UART handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  *           - Set handle State to READY
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_AbortReceive(UART_HandleTypeDef *huart)
{
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);

  /* Disable the UART DMA Rx request if enabled */
  if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);

    /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
    if(huart->hdmarx != NULL)
    {
      /* Set the UART DMA Abort callback to Null. 
         No call back execution at end of DMA abort procedure */
      huart->hdmarx->XferAbortCallback = NULL;

      HAL_DMA_Abort(huart->hdmarx);
    }
  }

  /* Reset Rx transfer counter */
  huart->RxXferCount = 0x00U;

  /* Restore huart->RxState to Ready */
  huart->RxState = HAL_UART_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Abort ongoing transfers (Interrupt mode).
  * @param  huart UART handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  *           - Set handle State to READY
  *           - At abort completion, call user abort complete callback
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_Abort_IT(UART_HandleTypeDef *huart)
{
  uint32_t AbortCplt = 0x01U;

  /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
  CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);

  /* If DMA Tx and/or DMA Rx Handles are associated to UART Handle, DMA Abort complete callbacks should be initialised
     before any call to DMA Abort functions */
  /* DMA Tx Handle is valid */
  if(huart->hdmatx != NULL)
  {
    /* Set DMA Abort Complete callback if UART DMA Tx request if enabled.
       Otherwise, set it to NULL */
    if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
    {
      huart->hdmatx->XferAbortCallback = UART_DMATxAbortCallback;
    }
    else
    {
      huart->hdmatx->XferAbortCallback = NULL;
    }
  }
  /* DMA Rx Handle is valid */
  if(huart->hdmarx != NULL)
  {
    /* Set DMA Abort Complete callback if UART DMA Rx request if enabled.
       Otherwise, set it to NULL */
    if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
    {
      huart->hdmarx->XferAbortCallback = UART_DMARxAbortCallback;
    }
    else
    {
      huart->hdmarx->XferAbortCallback = NULL;
    }
  }

  /* Disable the UART DMA Tx request if enabled */
  if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
  {
    /* Disable DMA Tx at UART level */
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);

    /* Abort the UART DMA Tx channel : use non blocking DMA Abort API (callback) */
    if(huart->hdmatx != NULL)
    {
      /* UART Tx DMA Abort callback has already been initialised : 
         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */

      /* Abort DMA TX */
      if(HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
      {
        huart->hdmatx->XferAbortCallback = NULL;
      }
      else
      {
        AbortCplt = 0x00U;
      }
    }
  }

  /* Disable the UART DMA Rx request if enabled */
  if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);

    /* Abort the UART DMA Rx channel : use non blocking DMA Abort API (callback) */
    if(huart->hdmarx != NULL)
    {
      /* UART Rx DMA Abort callback has already been initialised : 
         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */

      /* Abort DMA RX */
      if(HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
      {
        huart->hdmarx->XferAbortCallback = NULL;
        AbortCplt = 0x01U;
      }
      else
      {
        AbortCplt = 0x00U;
      }
    }
  }

  /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
  if(AbortCplt == 0x01U)
  {
    /* Reset Tx and Rx transfer counters */
    huart->TxXferCount = 0x00U; 
    huart->RxXferCount = 0x00U;

    /* Reset ErrorCode */
    huart->ErrorCode = HAL_UART_ERROR_NONE;

    /* Restore huart->gState and huart->RxState to Ready */
    huart->gState  = HAL_UART_STATE_READY;
    huart->RxState = HAL_UART_STATE_READY;

    /* As no DMA to be aborted, call directly user Abort complete callback */
    HAL_UART_AbortCpltCallback(huart);
  }

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Transmit transfer (Interrupt mode).
  * @param  huart UART handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  *           - Set handle State to READY
  *           - At abort completion, call user abort complete callback
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_AbortTransmit_IT(UART_HandleTypeDef *huart)
{
  /* Disable TXEIE and TCIE interrupts */
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));

  /* Disable the UART DMA Tx request if enabled */
  if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT))
  {
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);

    /* Abort the UART DMA Tx channel : use blocking DMA Abort API (no callback) */
    if(huart->hdmatx != NULL)
    {
      /* Set the UART DMA Abort callback : 
         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
      huart->hdmatx->XferAbortCallback = UART_DMATxOnlyAbortCallback;

      /* Abort DMA TX */
      if(HAL_DMA_Abort_IT(huart->hdmatx) != HAL_OK)
      {
        /* Call Directly huart->hdmatx->XferAbortCallback function in case of error */
        huart->hdmatx->XferAbortCallback(huart->hdmatx);
      }
    }
    else
    {
      /* Reset Tx transfer counter */
      huart->TxXferCount = 0x00U;

      /* Restore huart->gState to Ready */
      huart->gState = HAL_UART_STATE_READY;

      /* As no DMA to be aborted, call directly user Abort complete callback */
      HAL_UART_AbortTransmitCpltCallback(huart);
    }
  }
  else
  {
    /* Reset Tx transfer counter */
    huart->TxXferCount = 0x00U;

    /* Restore huart->gState to Ready */
    huart->gState = HAL_UART_STATE_READY;

    /* As no DMA to be aborted, call directly user Abort complete callback */
    HAL_UART_AbortTransmitCpltCallback(huart);
  }

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Receive transfer (Interrupt mode).
  * @param  huart UART handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  *           - Set handle State to READY
  *           - At abort completion, call user abort complete callback
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_UART_AbortReceive_IT(UART_HandleTypeDef *huart)
{
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);

  /* Disable the UART DMA Rx request if enabled */
  if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);

    /* Abort the UART DMA Rx channel : use blocking DMA Abort API (no callback) */
    if(huart->hdmarx != NULL)
    {
      /* Set the UART DMA Abort callback : 
         will lead to call HAL_UART_AbortCpltCallback() at end of DMA abort procedure */
      huart->hdmarx->XferAbortCallback = UART_DMARxOnlyAbortCallback;

      /* Abort DMA RX */
      if(HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
      {
        /* Call Directly huart->hdmarx->XferAbortCallback function in case of error */
        huart->hdmarx->XferAbortCallback(huart->hdmarx);
      }
    }
    else
    {
      /* Reset Rx transfer counter */
      huart->RxXferCount = 0x00U;

      /* Restore huart->RxState to Ready */
      huart->RxState = HAL_UART_STATE_READY;

      /* As no DMA to be aborted, call directly user Abort complete callback */
      HAL_UART_AbortReceiveCpltCallback(huart);
    }
  }
  else
  {
    /* Reset Rx transfer counter */
    huart->RxXferCount = 0x00U;

    /* Restore huart->RxState to Ready */
    huart->RxState = HAL_UART_STATE_READY;

    /* As no DMA to be aborted, call directly user Abort complete callback */
    HAL_UART_AbortReceiveCpltCallback(huart);
  }

  return HAL_OK;
}

/**
  * @brief  This function handles UART interrupt request.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval None
  */
void HAL_UART_IRQHandler(UART_HandleTypeDef *huart)
{
   uint32_t isrflags   = READ_REG(huart->Instance->SR);
   uint32_t cr1its     = READ_REG(huart->Instance->CR1);
   uint32_t cr3its     = READ_REG(huart->Instance->CR3);
   uint32_t errorflags = 0x00U;
   uint32_t dmarequest = 0x00U;

  /* If no error occurs */
  errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE));
  if(errorflags == RESET)
  {
    /* UART in mode Receiver -------------------------------------------------*/
    if(((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
    {
      UART_Receive_IT(huart);
      return;
    }
  }

  /* If some errors occur */
  if((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET) || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)))
  {
    /* UART parity error interrupt occurred ----------------------------------*/
    if(((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET))
    {
      huart->ErrorCode |= HAL_UART_ERROR_PE;
    }

    /* UART noise error interrupt occurred -----------------------------------*/
    if(((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
    {
      huart->ErrorCode |= HAL_UART_ERROR_NE;
    }

    /* UART frame error interrupt occurred -----------------------------------*/
    if(((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
    {
      huart->ErrorCode |= HAL_UART_ERROR_FE;
    }

    /* UART Over-Run interrupt occurred --------------------------------------*/
    if(((isrflags & USART_SR_ORE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
    { 
      huart->ErrorCode |= HAL_UART_ERROR_ORE;
    }

    /* Call UART Error Call back function if need be --------------------------*/
    if(huart->ErrorCode != HAL_UART_ERROR_NONE)
    {
      /* UART in mode Receiver -----------------------------------------------*/
      if(((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
      {
        UART_Receive_IT(huart);
      }

      /* If Overrun error occurs, or if any error occurs in DMA mode reception,
         consider error as blocking */
      dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR);
      if(((huart->ErrorCode & HAL_UART_ERROR_ORE) != RESET) || dmarequest)
      {
        /* Blocking error : transfer is aborted
           Set the UART state ready to be able to start again the process,
           Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
        UART_EndRxTransfer(huart);

        /* Disable the UART DMA Rx request if enabled */
        if(HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR))
        {
          CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);

          /* Abort the UART DMA Rx channel */
          if(huart->hdmarx != NULL)
          {
            /* Set the UART DMA Abort callback : 
               will lead to call HAL_UART_ErrorCallback() at end of DMA abort procedure */
            huart->hdmarx->XferAbortCallback = UART_DMAAbortOnError;
            if(HAL_DMA_Abort_IT(huart->hdmarx) != HAL_OK)
            {
              /* Call Directly XferAbortCallback function in case of error */
              huart->hdmarx->XferAbortCallback(huart->hdmarx);
            }
          }
          else
          {
            /* Call user error callback */
            HAL_UART_ErrorCallback(huart);
          }
        }
        else
        {
          /* Call user error callback */
          HAL_UART_ErrorCallback(huart);
        }
      }
      else
      {
        /* Non Blocking error : transfer could go on. 
           Error is notified to user through user error callback */
        HAL_UART_ErrorCallback(huart);
        huart->ErrorCode = HAL_UART_ERROR_NONE;
      }
    }
    return;
  } /* End if some error occurs */

  /* UART in mode Transmitter ------------------------------------------------*/
  if(((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
  {
    UART_Transmit_IT(huart);
    return;
  }
  
  /* UART in mode Transmitter end --------------------------------------------*/
  if(((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))
  {
    UART_EndTransmit_IT(huart);
    return;
  }
}

/**
  * @brief  Tx Transfer completed callbacks.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval None
  */
 __weak void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart);
  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_UART_TxCpltCallback could be implemented in the user file
   */ 
}

/**
  * @brief  Tx Half Transfer completed callbacks.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval None
  */
 __weak void HAL_UART_TxHalfCpltCallback(UART_HandleTypeDef *huart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart);
  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_UART_TxHalfCpltCallback could be implemented in the user file
   */ 
}

/**
  * @brief  Rx Transfer completed callbacks.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval None
  */
__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart);
  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_UART_RxCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  Rx Half Transfer completed callbacks.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval None
  */
__weak void HAL_UART_RxHalfCpltCallback(UART_HandleTypeDef *huart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart);
  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_UART_RxHalfCpltCallback could be implemented in the user file
   */
}

/**
  * @brief  UART error callbacks.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval None
  */
 __weak void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart); 
  /* NOTE: This function Should not be modified, when the callback is needed,
           the HAL_UART_ErrorCallback could be implemented in the user file
   */ 
}

/**
  * @brief  UART Abort Complete callback.
  * @param  huart UART handle.
  * @retval None
  */
__weak void HAL_UART_AbortCpltCallback (UART_HandleTypeDef *huart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_UART_AbortCpltCallback can be implemented in the user file.
   */
}
/**
  * @brief  UART Abort Complete callback.
  * @param  huart UART handle.
  * @retval None
  */
__weak void HAL_UART_AbortTransmitCpltCallback (UART_HandleTypeDef *huart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_UART_AbortTransmitCpltCallback can be implemented in the user file.
   */
}

/**
  * @brief  UART Abort Receive Complete callback.
  * @param  huart UART handle.
  * @retval None
  */
__weak void HAL_UART_AbortReceiveCpltCallback (UART_HandleTypeDef *huart)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(huart);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_UART_AbortReceiveCpltCallback can be implemented in the user file.
   */
}

/**
  * @}
  */

/** @defgroup UART_Exported_Functions_Group3 Peripheral Control functions 
  *  @brief   UART control functions 
  *
@verbatim   
  ==============================================================================
                      ##### Peripheral Control functions #####
  ==============================================================================  
  [..]
    This subsection provides a set of functions allowing to control the UART:
    (+) HAL_LIN_SendBreak() API can be helpful to transmit the break character.
    (+) HAL_MultiProcessor_EnterMuteMode() API can be helpful to enter the UART in mute mode. 
    (+) HAL_MultiProcessor_ExitMuteMode() API can be helpful to exit the UART mute mode by software.
    (+) HAL_HalfDuplex_EnableTransmitter() API to enable the UART transmitter and disables the UART receiver in Half Duplex mode
    (+) HAL_HalfDuplex_EnableReceiver() API to enable the UART receiver and disables the UART transmitter in Half Duplex mode
    
@endverbatim
  * @{
  */

/**
  * @brief  Transmits break characters.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_LIN_SendBreak(UART_HandleTypeDef *huart)
{
  /* Check the parameters */
  assert_param(IS_UART_INSTANCE(huart->Instance));
  
  /* Process Locked */
  __HAL_LOCK(huart);
  
  huart->gState = HAL_UART_STATE_BUSY;
  
  /* Send break characters */
  SET_BIT(huart->Instance->CR1, USART_CR1_SBK);
 
  huart->gState = HAL_UART_STATE_READY;
  
  /* Process Unlocked */
  __HAL_UNLOCK(huart);
  
  return HAL_OK; 
}

/**
  * @brief  Enters the UART in mute mode. 
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_MultiProcessor_EnterMuteMode(UART_HandleTypeDef *huart)
{
  /* Check the parameters */
  assert_param(IS_UART_INSTANCE(huart->Instance));
  
  /* Process Locked */
  __HAL_LOCK(huart);
  
  huart->gState = HAL_UART_STATE_BUSY;
  
  /* Enable the USART mute mode  by setting the RWU bit in the CR1 register */
  SET_BIT(huart->Instance->CR1, USART_CR1_RWU);
  
  huart->gState = HAL_UART_STATE_READY;
  
  /* Process Unlocked */
  __HAL_UNLOCK(huart);
  
  return HAL_OK; 
}

/**
  * @brief  Exits the UART mute mode: wake up software. 
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_MultiProcessor_ExitMuteMode(UART_HandleTypeDef *huart)
{
  /* Check the parameters */
  assert_param(IS_UART_INSTANCE(huart->Instance));
  
  /* Process Locked */
  __HAL_LOCK(huart);
  
  huart->gState = HAL_UART_STATE_BUSY;
  
  /* Disable the USART mute mode by clearing the RWU bit in the CR1 register */
  CLEAR_BIT(huart->Instance->CR1, USART_CR1_RWU);
  
  huart->gState = HAL_UART_STATE_READY;
  
  /* Process Unlocked */
  __HAL_UNLOCK(huart);
  
  return HAL_OK; 
}

/**
  * @brief  Enables the UART transmitter and disables the UART receiver.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_HalfDuplex_EnableTransmitter(UART_HandleTypeDef *huart)
{
  uint32_t tmpreg = 0x00U;

  /* Process Locked */
  __HAL_LOCK(huart);
  
  huart->gState = HAL_UART_STATE_BUSY;

  /*-------------------------- USART CR1 Configuration -----------------------*/
  tmpreg = huart->Instance->CR1;

  /* Clear TE and RE bits */
  tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));

  /* Enable the USART's transmit interface by setting the TE bit in the USART CR1 register */
  tmpreg |= (uint32_t)USART_CR1_TE;

  /* Write to USART CR1 */
  WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);

  huart->gState = HAL_UART_STATE_READY;
  
  /* Process Unlocked */
  __HAL_UNLOCK(huart);
  
  return HAL_OK; 
}

/**
  * @brief  Enables the UART receiver and disables the UART transmitter.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_HalfDuplex_EnableReceiver(UART_HandleTypeDef *huart)
{
  uint32_t tmpreg = 0x00U;

  /* Process Locked */
  __HAL_LOCK(huart);

  huart->gState = HAL_UART_STATE_BUSY;

  /*-------------------------- USART CR1 Configuration -----------------------*/
  tmpreg = huart->Instance->CR1;

  /* Clear TE and RE bits */
  tmpreg &= (uint32_t)~((uint32_t)(USART_CR1_TE | USART_CR1_RE));

  /* Enable the USART's receive interface by setting the RE bit in the USART CR1 register */
  tmpreg |= (uint32_t)USART_CR1_RE;

  /* Write to USART CR1 */
  WRITE_REG(huart->Instance->CR1, (uint32_t)tmpreg);

  huart->gState = HAL_UART_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(huart);
  
  return HAL_OK; 
}

/**
  * @}
  */

/** @defgroup UART_Exported_Functions_Group4 Peripheral State and Errors functions 
  *  @brief   UART State and Errors functions 
  *
@verbatim   
  ==============================================================================
                 ##### Peripheral State and Errors functions #####
  ==============================================================================  
 [..]
   This subsection provides a set of functions allowing to return the State of 
   UART communication process, return Peripheral Errors occurred during communication 
   process
   (+) HAL_UART_GetState() API can be helpful to check in run-time the state of the UART peripheral.
   (+) HAL_UART_GetError() check in run-time errors that could be occurred during communication. 

@endverbatim
  * @{
  */
  
/**
  * @brief  Returns the UART state.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL state
  */
HAL_UART_StateTypeDef HAL_UART_GetState(UART_HandleTypeDef *huart)
{
  uint32_t temp1= 0x00U, temp2 = 0x00U;
  temp1 = huart->gState;
  temp2 = huart->RxState;
  
  return (HAL_UART_StateTypeDef)(temp1 | temp2);
}

/**
  * @brief  Return the UART error code
  * @param  huart : pointer to a UART_HandleTypeDef structure that contains
  *              the configuration information for the specified UART.
  * @retval UART Error Code
  */
uint32_t HAL_UART_GetError(UART_HandleTypeDef *huart)
{
  return huart->ErrorCode;
}

/**
  * @}
  */

/**
  * @brief  DMA UART transmit process complete callback. 
  * @param  hdma: DMA handle
  * @retval None
  */
static void UART_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  /* DMA Normal mode*/
  if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
  {
    huart->TxXferCount = 0U;

    /* Disable the DMA transfer for transmit request by setting the DMAT bit
       in the UART CR3 register */
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAT);

    /* Enable the UART Transmit Complete Interrupt */
    SET_BIT(huart->Instance->CR1, USART_CR1_TCIE);

  }
  /* DMA Circular mode */
  else
  {
    HAL_UART_TxCpltCallback(huart);
  }
}

/**
  * @brief DMA UART transmit process half complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void UART_DMATxHalfCplt(DMA_HandleTypeDef *hdma)
{
  UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;

  HAL_UART_TxHalfCpltCallback(huart);
}

/**
  * @brief  DMA UART receive process complete callback. 
  * @param  hdma: DMA handle
  * @retval None
  */
static void UART_DMAReceiveCplt(DMA_HandleTypeDef *hdma)
{
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  /* DMA Normal mode*/
  if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
  {
    huart->RxXferCount = 0U;
  
    /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
    CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
    
    /* Disable the DMA transfer for the receiver request by setting the DMAR bit 
       in the UART CR3 register */
    CLEAR_BIT(huart->Instance->CR3, USART_CR3_DMAR);

    /* At end of Rx process, restore huart->RxState to Ready */
    huart->RxState = HAL_UART_STATE_READY;
  }
  HAL_UART_RxCpltCallback(huart);
}

/**
  * @brief DMA UART receive process half complete callback 
  * @param  hdma: pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void UART_DMARxHalfCplt(DMA_HandleTypeDef *hdma)
{
  UART_HandleTypeDef* huart = (UART_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
  HAL_UART_RxHalfCpltCallback(huart); 
}

/**
  * @brief  DMA UART communication error callback.
  * @param  hdma: DMA handle
  * @retval None
  */
static void UART_DMAError(DMA_HandleTypeDef *hdma)
{
  uint32_t dmarequest = 0x00U;
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  /* Stop UART DMA Tx request if ongoing */
  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAT);
  if((huart->gState == HAL_UART_STATE_BUSY_TX) && dmarequest)
  {
    huart->TxXferCount = 0U;
    UART_EndTxTransfer(huart);
  }

  /* Stop UART DMA Rx request if ongoing */
  dmarequest = HAL_IS_BIT_SET(huart->Instance->CR3, USART_CR3_DMAR); 
  if((huart->RxState == HAL_UART_STATE_BUSY_RX) && dmarequest)
  {
    huart->RxXferCount = 0U;
    UART_EndRxTransfer(huart);
  }

  huart->ErrorCode |= HAL_UART_ERROR_DMA;
  HAL_UART_ErrorCallback(huart);
}

/**
  * @brief  This function handles UART Communication Timeout.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @param  Flag: specifies the UART flag to check.
  * @param  Status: The new Flag status (SET or RESET).
  * @param  Tickstart Tick start value
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef UART_WaitOnFlagUntilTimeout(UART_HandleTypeDef *huart, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout)
{
  /* Wait until flag is set */
  while((__HAL_UART_GET_FLAG(huart, Flag) ? SET : RESET) == Status) 
  {
    /* Check for the Timeout */
    if(Timeout != HAL_MAX_DELAY)
    {
      if((Timeout == 0U)||((HAL_GetTick() - Tickstart ) > Timeout))
      {
        /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
        CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
        CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
        
        huart->gState  = HAL_UART_STATE_READY;
        huart->RxState = HAL_UART_STATE_READY;
        
        /* Process Unlocked */
        __HAL_UNLOCK(huart);
        
        return HAL_TIMEOUT;
      }
    }
  }
  
  return HAL_OK;
}

/**
  * @brief  End ongoing Tx transfer on UART peripheral (following error detection or Transmit completion).
  * @param  huart: UART handle.
  * @retval None
  */
static void UART_EndTxTransfer(UART_HandleTypeDef *huart)
{
  /* Disable TXEIE and TCIE interrupts */
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));

  /* At end of Tx process, restore huart->gState to Ready */
  huart->gState = HAL_UART_STATE_READY;
}

/**
  * @brief  End ongoing Rx transfer on UART peripheral (following error detection or Reception completion).
  * @param  huart: UART handle.
  * @retval None
  */
static void UART_EndRxTransfer(UART_HandleTypeDef *huart)
{
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(huart->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);

  /* At end of Rx process, restore huart->RxState to Ready */
  huart->RxState = HAL_UART_STATE_READY;
}

/**
  * @brief  DMA UART communication abort callback, when initiated by HAL services on Error
  *         (To be called at end of DMA Abort procedure following error occurrence).
  * @param  hdma DMA handle.
  * @retval None
  */
static void UART_DMAAbortOnError(DMA_HandleTypeDef *hdma)
{
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  huart->RxXferCount = 0x00U;
  huart->TxXferCount = 0x00U;

  HAL_UART_ErrorCallback(huart);
}

/**
  * @brief  DMA UART Tx communication abort callback, when initiated by user
  *         (To be called at end of DMA Tx Abort procedure following user abort request).
  * @note   When this callback is executed, User Abort complete call back is called only if no
  *         Abort still ongoing for Rx DMA Handle.
  * @param  hdma DMA handle.
  * @retval None
  */
static void UART_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
{
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  huart->hdmatx->XferAbortCallback = NULL;

  /* Check if an Abort process is still ongoing */
  if(huart->hdmarx != NULL)
  {
    if(huart->hdmarx->XferAbortCallback != NULL)
    {
      return;
    }
  }

  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
  huart->TxXferCount = 0x00U;
  huart->RxXferCount = 0x00U;

  /* Reset ErrorCode */
  huart->ErrorCode = HAL_UART_ERROR_NONE;

  /* Restore huart->gState and huart->RxState to Ready */
  huart->gState  = HAL_UART_STATE_READY;
  huart->RxState = HAL_UART_STATE_READY;

  /* Call user Abort complete callback */
  HAL_UART_AbortCpltCallback(huart);
}

/**
  * @brief  DMA UART Rx communication abort callback, when initiated by user
  *         (To be called at end of DMA Rx Abort procedure following user abort request).
  * @note   When this callback is executed, User Abort complete call back is called only if no
  *         Abort still ongoing for Tx DMA Handle.
  * @param  hdma DMA handle.
  * @retval None
  */
static void UART_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
{
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  huart->hdmarx->XferAbortCallback = NULL;

  /* Check if an Abort process is still ongoing */
  if(huart->hdmatx != NULL)
  {
    if(huart->hdmatx->XferAbortCallback != NULL)
    {
      return;
    }
  }
  
  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
  huart->TxXferCount = 0x00U;
  huart->RxXferCount = 0x00U;

  /* Reset ErrorCode */
  huart->ErrorCode = HAL_UART_ERROR_NONE;

  /* Restore huart->gState and huart->RxState to Ready */
  huart->gState  = HAL_UART_STATE_READY;
  huart->RxState = HAL_UART_STATE_READY;

  /* Call user Abort complete callback */
  HAL_UART_AbortCpltCallback(huart);
}

/**
  * @brief  DMA UART Tx communication abort callback, when initiated by user by a call to
  *         HAL_UART_AbortTransmit_IT API (Abort only Tx transfer)
  *         (This callback is executed at end of DMA Tx Abort procedure following user abort request,
  *         and leads to user Tx Abort Complete callback execution).
  * @param  hdma DMA handle.
  * @retval None
  */
static void UART_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
{
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  huart->TxXferCount = 0x00U;

  /* Restore huart->gState to Ready */
  huart->gState = HAL_UART_STATE_READY;

  /* Call user Abort complete callback */
  HAL_UART_AbortTransmitCpltCallback(huart);
}

/**
  * @brief  DMA UART Rx communication abort callback, when initiated by user by a call to
  *         HAL_UART_AbortReceive_IT API (Abort only Rx transfer)
  *         (This callback is executed at end of DMA Rx Abort procedure following user abort request,
  *         and leads to user Rx Abort Complete callback execution).
  * @param  hdma DMA handle.
  * @retval None
  */
static void UART_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
{
  UART_HandleTypeDef* huart = ( UART_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  huart->RxXferCount = 0x00U;

  /* Restore huart->RxState to Ready */
  huart->RxState = HAL_UART_STATE_READY;

  /* Call user Abort complete callback */
  HAL_UART_AbortReceiveCpltCallback(huart);
}

/**
  * @brief  Sends an amount of data in non blocking mode.
  * @param  huart: Pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
static HAL_StatusTypeDef UART_Transmit_IT(UART_HandleTypeDef *huart)
{
  uint16_t* tmp;
  
  /* Check that a Tx process is ongoing */
  if(huart->gState == HAL_UART_STATE_BUSY_TX)
  {
    if(huart->Init.WordLength == UART_WORDLENGTH_9B)
    {
      tmp = (uint16_t*) huart->pTxBuffPtr;
      huart->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF);
      if(huart->Init.Parity == UART_PARITY_NONE)
      {
        huart->pTxBuffPtr += 2U;
      }
      else
      {
        huart->pTxBuffPtr += 1U;
      }
    } 
    else
    {
      huart->Instance->DR = (uint8_t)(*huart->pTxBuffPtr++ & (uint8_t)0x00FF);
    }

    if(--huart->TxXferCount == 0U)
    {
      /* Disable the UART Transmit Complete Interrupt */
      __HAL_UART_DISABLE_IT(huart, UART_IT_TXE);

      /* Enable the UART Transmit Complete Interrupt */    
      __HAL_UART_ENABLE_IT(huart, UART_IT_TC);
    }
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Wraps up transmission in non blocking mode.
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
static HAL_StatusTypeDef UART_EndTransmit_IT(UART_HandleTypeDef *huart)
{
  /* Disable the UART Transmit Complete Interrupt */    
  __HAL_UART_DISABLE_IT(huart, UART_IT_TC);
  
  /* Tx process is ended, restore huart->gState to Ready */
  huart->gState = HAL_UART_STATE_READY;
  HAL_UART_TxCpltCallback(huart);
  
  return HAL_OK;
}

/**
  * @brief  Receives an amount of data in non blocking mode 
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval HAL status
  */
static HAL_StatusTypeDef UART_Receive_IT(UART_HandleTypeDef *huart)
{
  uint16_t* tmp;
  
  /* Check that a Rx process is ongoing */
  if(huart->RxState == HAL_UART_STATE_BUSY_RX) 
  {
    if(huart->Init.WordLength == UART_WORDLENGTH_9B)
    {
      tmp = (uint16_t*) huart->pRxBuffPtr;
      if(huart->Init.Parity == UART_PARITY_NONE)
      {
        *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x01FF);
        huart->pRxBuffPtr += 2U;
      }
      else
      {
        *tmp = (uint16_t)(huart->Instance->DR & (uint16_t)0x00FF);
        huart->pRxBuffPtr += 1U;
      }
    }
    else
    {
      if(huart->Init.Parity == UART_PARITY_NONE)
      {
        *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x00FF);
      }
      else
      {
        *huart->pRxBuffPtr++ = (uint8_t)(huart->Instance->DR & (uint8_t)0x007F);
      }
    }

    if(--huart->RxXferCount == 0U)
    {
      /* Disable the IRDA Data Register not empty Interrupt */
      __HAL_UART_DISABLE_IT(huart, UART_IT_RXNE);

      /* Disable the UART Parity Error Interrupt */
      __HAL_UART_DISABLE_IT(huart, UART_IT_PE);
        /* Disable the UART Error Interrupt: (Frame error, noise error, overrun error) */
        __HAL_UART_DISABLE_IT(huart, UART_IT_ERR);

      /* Rx process is completed, restore huart->RxState to Ready */
      huart->RxState = HAL_UART_STATE_READY;

      HAL_UART_RxCpltCallback(huart);

      return HAL_OK;
    }
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Configures the UART peripheral. 
  * @param  huart: pointer to a UART_HandleTypeDef structure that contains
  *                the configuration information for the specified UART module.
  * @retval None
  */
static void UART_SetConfig(UART_HandleTypeDef *huart)
{
  uint32_t tmpreg = 0x00U;

  /* Check the parameters */
  assert_param(IS_UART_BAUDRATE(huart->Init.BaudRate));
  assert_param(IS_UART_STOPBITS(huart->Init.StopBits));
  assert_param(IS_UART_PARITY(huart->Init.Parity));
  assert_param(IS_UART_MODE(huart->Init.Mode));

  /*------- UART-associated USART registers setting : CR2 Configuration ------*/
  /* Configure the UART Stop Bits: Set STOP[13:12] bits according 
   * to huart->Init.StopBits value */
  MODIFY_REG(huart->Instance->CR2, USART_CR2_STOP, huart->Init.StopBits);

  /*------- UART-associated USART registers setting : CR1 Configuration ------*/
  /* Configure the UART Word Length, Parity and mode: 
     Set the M bits according to huart->Init.WordLength value 
     Set PCE and PS bits according to huart->Init.Parity value
     Set TE and RE bits according to huart->Init.Mode value
     Set OVER8 bit according to huart->Init.OverSampling value */

#if defined(USART_CR1_OVER8)
  tmpreg |= (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode | huart->Init.OverSampling;
  MODIFY_REG(huart->Instance->CR1, 
             (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE | USART_CR1_OVER8), 
             tmpreg);
#else
  tmpreg |= (uint32_t)huart->Init.WordLength | huart->Init.Parity | huart->Init.Mode;
  MODIFY_REG(huart->Instance->CR1, 
             (uint32_t)(USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE), 
             tmpreg);
#endif /* USART_CR1_OVER8 */

  /*------- UART-associated USART registers setting : CR3 Configuration ------*/
  /* Configure the UART HFC: Set CTSE and RTSE bits according to huart->Init.HwFlowCtl value */
  MODIFY_REG(huart->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE), huart->Init.HwFlowCtl);

#if defined(USART_CR1_OVER8)
  /* Check the Over Sampling */
  if(huart->Init.OverSampling == UART_OVERSAMPLING_8)
  {
    /*-------------------------- USART BRR Configuration ---------------------*/
    if(huart->Instance == USART1)
    {
      huart->Instance->BRR = UART_BRR_SAMPLING8(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate);
    }
    else
    {
      huart->Instance->BRR = UART_BRR_SAMPLING8(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate);
    }
  }
  else
  {
    /*-------------------------- USART BRR Configuration ---------------------*/
    if(huart->Instance == USART1)
    {
      huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate);
    }
    else
    {
      huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate);
    }
  }
#else
  /*-------------------------- USART BRR Configuration ---------------------*/
  if(huart->Instance == USART1)
  {
    huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK2Freq(), huart->Init.BaudRate);
  }
  else
  {
    huart->Instance->BRR = UART_BRR_SAMPLING16(HAL_RCC_GetPCLK1Freq(), huart->Init.BaudRate);
  }
#endif /* USART_CR1_OVER8 */
}

/**
  * @}
  */

#endif /* HAL_UART_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/